

An Overview of Current and Emerging Water Treatment Technologies

Presented by :

Dr. Sanaz Safa & Prof. Pedro A. Segura

Department of Chemistry, University of Sherbrooke (UdS)

Towards a Greener Semiconductor Industry Symposium September 14, 2016, C2MI, QC, Canada

Part I: Overview of water treatment technologies

Part II: Characteristic of drain rinsing water

Part III: Semiconductor wastewater treatment technologies

Part IV: Some ideas for treatment technologies

Part I: Overview of water treatment technologies

Overview of Water Treatment Technologies

- Multi-Effect
 Distillation (MED)
- MED with vapour compression
- Multi-stage flash evaporation (MSF)

Membrane processes

- Reverse Osmosis (RO)
- Electrodialysis (ED)
- Electrodeionization (EDI)
- Membrane Distillation (MD)

Non-traditional processes

- Humidification
 Dehumidification
 (HDH)
- Forward Osmosis (FO)
- Freezing–Melting (FM)

4

Ion Exchange (IX)

Traditional Thermal processes

Multi-stage flash (MSF):

0

	Advantages	Disadvantages		focus		
•	No pre-treatment Less fouling and scaling problem compared with Multi-Effect Distillation (MED)	 Thermodynamic efficiency is lower than MED Almost 70% of the input heat is lost during the process High energy consumption 	•	Improvements in thermodynamics		

5

Thermal processes

Humidification Dehumidification (HDH):

Easily scale up •

pressure

•

•

fracking sites (company:

Gradiant)

Membrane processes

Eorward Osmosis (FO):

0

	Advantages	Disadvantages		Current status/ research focus	
•	No external pressure is required Highly fouling resistant and easily cleanable	 Thermal energy is necessary to regenerate the draw 	•	Gaining commercial application for desalination, particularly since 2010	
•	Energy consumption is similar to RO No need for high grade energy source				

Freezing-Melting (FM):

Relatively pure ice crystals form, and an unfrozen solution (brine), containing elevated concentrations of the dissolved constituents, drains from the ice.

Advantages	Disadvantage	Current status/ research focus
 Main advantage is low energy requirement (fusion energy 1/7 of evaporation energy) 	lce separation	 Under Development Currently limited to food processing
 Less scaling and fouling problem 		
• No need for pre-treatment		
• 90% removal efficiency for:		
✓ Total suspended solids (TSS)		
✓ Total dissolved solids (TDS)		
 Volatile organic compounds 		
✓ Heavy metals		

MIT, Desalination and Water Purification

Advantages	Disadvantages
 Produce high purity water 	 Limited to relatively low-salinity w treatment applications
 High water recovery (~ 97-99%) 	 It is cost prohibitive Use of chemicals for regeneration
• Robust	

Ion Exchange (IX):

Current Commercial Technologies

- Prior to 1990, membrane technologies made up less than 1/3 of the global water treatment capacity.
- Today, membranes account for just under 2/3 of the total installed treatment capacity.
- Reverse Osmosis (RO) offers smaller infrastructure, and it is more cost-effective compared with traditional thermal processes.
 Desalination, water from water (2014)

Part II: Characteristic of drain rinsing water

Sampling of drain rinsing water

			CMP Wastewater 4	Wafer Input (pre-treatment/CMP)
Preliminary and RCA clean				
Process and chemical ratio	Removal Goals			1. Oxidation
Preliminary cleaning; H ₂ SO ₄ /H ₂ O ₂	Organic carbon,			
(4:1)	Photoresist material			
DI water (UPW: Ultra Pure Water)	Rinse			2a. Photolithography
HF (0.5%)	Oxides			Wafer
DI water (UPW)	Rinse			2b. Oxide Photresist
RCA	Particles, organics, some			Photomask
Standard Clean 1 (SC1);	metals		Etching Wastewater 4	
NH ₄ OH/H ₂ O ₂ /H ₂ O (1:1:5) 70-90 ^o C				2 Etching and Ian Involuntation
DI water (UPW)	Rinse			5. Etcning and ion implantation
Standard Clean 2 (SC2);	Metals			
HCI/H ₂ O ₂ /H ₂ O				4. Photoresist Removal
(1:1:6) 70-90°C				
DI water (UPW)	Rinse		Cleaning Wastewater	

J. A. Gottschalk, Christiane; Libra and A. Saupe, Ozonation of Water and Waste Water. Wiley-VCH, 2010.

Characteristic of drain rinsing water

Concentration (μg/L)

Drain rinsing water -C2MI:

Water Quality Parameter	Rinsing water		
	of C2MI		
Turbidity (NTU)	0.07		
рН	6-7		
TOC (ppm)	0.1-0.9		
COD (ppb)	0.03-0.12		
Suspended solids > 0.45µm	0		
Total Metal (ppb)	13.25		
Sulphate (ppm)	<0.05		
Fluoride (ppm)	<0.01		
Chloride (ppm)	<0.05		
Bromide (ppm)	<0.02		
Nitrate (ppm)	<0.3		
Phosphate (ppm)	<0.03		

 \checkmark Drain rinse water contains small quantities of impurities

14

Characteristic of drain rinsing water

Typical drain rinsing water quality comparison:

 ✓ Drain rinse water of all fabrication plants contains small quantities of impurities
 ✓ Less impurities than municipal water

Ref: DeGenova, J., "Recovery, reuse, and recycle of water in semiconductor wafer fabrication facilities," Environ. Prog., vol. 16, no. 4, 1997 Ref: R. Ajay and J. H. Ploeser, "Reusing rinse wastewater at a semiconductor plant," 1999

.5

Part III: Semiconductor wastewater treatment technologies

Semiconductor wastewater treatment:

Conventional treatment solutions:

Waste type/treatment	Physicochemical	Evapoconcentration	Biochemical reactor	Filtration	Adsorption	Neutralization
Diluted waste (acid/base and rinse water)						***
Fluoride and phosphorous waste	***					*
Nitrogenous Waste		***	***			*
Colloids (from CMP processes)	***			**		*
Suspended particles (grinding and sawing processes)	***			**		*
Heavy metals	***					*
Diluted organic wastes					**	*

<u>Neutralization</u>:

- Adjusting pH in acid and alkaline solutions
- Physicochemical:
 - Typically based on the precipitation of metal hydroxides at variable pH.
 - Including: pH adjustment; coagulation/flocculation; and filtration
- **Bio-treatment:**
 - ✓ Based on growing bacteria
- **Evaporation:**
 - Energy intensive but economic when valorization of the wastes is possible

Most effective on concentrated solutions

Ref: Chemistry in Microelectronics, 2013

Major wastewater streams in a semiconductor factory:

<u>Rinsing water is discharged into environment or municipal sewers along with other wastes after neutralization</u>

Semiconductor wastewater treatment:

Treatment solution for semiconductor wastewater via OVIVO:

- The main focus on separating materials mostly from CMP
 wastewater
- Treatment to meet environmental discharge; not reuse
- <u>Drain rinse water</u> is discharged after neutralization process
- The research is limited to remove specific materials from CMP wastewater

Water recovery and reuse opportunities for drain rinsing water

Water separation from drain rinse water is economic:

- It decreases the total water usage from municipal water due to reuse application as Ultra Pure Water (UPW) in fabrication process
- It decreases the volume of the wastewater to be treated by a third party

19

Possibility of valorization of the effluents

Possibility of using renewable energies for treatment

Part IV: Some ideas for treatment technologies

Parameters for technology selection for drain rinsing water treatment:

- ✓ Able to produce UPW for reuse in fabrication process;
- ✓ Cost-effective;
- Robustness and low-maintenance;
- Easily scalable for treatment of large amount of drain rinse water;

- Minimum space requirement;
- Preferably use renewable energy.

Ideas for Treatment technology for semiconductor drain rinsing water treatment

22

Parameters Treatment method	Minimum space requirement	Robustness and low-maintenance	Use renewable energy	Easily scalable	Cost-effective	Produce UPW
Humidification- Dehumidification (HDH)	-	-	*	*	*	*
Forward osmosis (FO)	*	*	*	*	*	*
Freezing-Melting (FM)	-	-	*	*	*	*
Reverse Osmosis (RO)	*	-	-	*		*
Ion Exchange (IX)	*	-	-	-	-	*

Forward Osmosis

1)

- 2) Freezing-Melting
- 3) Humidification-dehumidification
- 4) Reverse Osmosis
- 5) Ion Exchange

Thank you

Questions? Open Discussion!

